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Abstract
Alower bound for theADMmass is established in termsof angularmomentum, charge,
and horizon area in the context of maximal, axisymmetric initial data for the Einstein–
Maxwell equations which satisfy the weak energy condition. If, on the horizon, the
given data agree to a certain extent with the associatedmodel Kerr–Newman data, then
the inequality reduces to the conjectured Penrose inequality with angular momentum
and charge. In addition, a rigidity statement is also provenwhereby equality is achieved
if and only if the data set arises from the canonical slice of a Kerr–Newman spacetime.

Keywords Penrose inequality · Angular momentum · Axisymmetry · Weyl
coordinates · Harmonic maps

1 Introduction

Consider a simply connected, asymptotically flat initial data set (M, g, k, E, B) for the
Einstein–Maxwell equations. Here M is a Riemannian 3-manifold with metric g, k is a
symmetric 2-tensor representing the second fundamental form of the embedding into
spacetime, and (E, B) represents the electromagnetic field. The non-electromagnetic
matter energy and momentum densities are given by
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16πμem = R + (Trg k)
2 − |k|2g − 2(|E |2g + |B|2g),

8π Jem = divg(k − (Trg k)g) + 2E × B, (1.1)

where R is the scalar curvature and E× B represents cross product. It will be assumed
that the weak energy condition μem ≥ 0 holds, the data are maximal Trg k = 0, and
that there is no charged matter

divg E = divg B = 0. (1.2)

In addition, the data are taken to be axisymmetric in that the isometry group of (M, g)
admits a subgroup isomorphic toU (1), such that all other quantities defining the data
are invariant under this U (1) action. The Killing field generator will be denoted by
η. Moreover, we will say that the initial data are asymptotically flat if there exists an
end Mend ⊂ M diffeomorphic to R

3 \ Ball, so that for some ε > 0 in the asymptotic
coordinates

gi j = δi j + O�(r
− 1

2−ε), ∂gi j ∈ L2(Mend), ki j = O�−1(r
−λ− 1

2 ), (1.3)

μem, J iem, Jem(η) ∈ L1(Mend), Ei = O�−1(r
−λ),

Bi = O�−1(r
−λ), λ >

3

2
, � ≥ 5. (1.4)

Heuristic arguments originally due to Penrose [23] suggest the inequality

m ≥
√

A
16π

+ Q2

2
+ π(Q4 + 4J 2)

A whenever A ≥ 4π
√
Q4 + 4J 2, (1.5)

where m is the ADM mass, A is the event horizon cross-sectional area, and the total
angular momentum and charges take the form

J = 1

8π

∫
S∞

(ki j − (Trg k)gi j )ν
iη j , Qe = 1

4π

∫
S∞

Eiν
i ,

Qb = 1

4π

∫
S∞

Biν
i , (1.6)

with Q2 = Q2
e + Q2

b. In these formulas S∞ represents the limit as r → ∞ for coordi-
nate spheres Sr in the asymptotic end, and ν is the unit outer normal. Inequality (1.5)
was proposed as a check on the final state conjecture and weak cosmic censorship,
in that a counterexample would essentially disprove at least one of these grand con-
jectures. Details concerning the heuristic derivation of this most general form of the
Penrose inequality are provided in [14]. Furthermore an independent heuristic moti-
vation for this inequality, based on Bekenstein’s entropy bound [3], has been given in
[18].

In order to prove Penrose type inequalities it is customary to replace A in the
maximal case with the area of the outermost minimal surface, and in the general case
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with the minimum area required to enclose the outermost apparent horizon. Therefore,
the manifold (M, g)will be taken to have a boundary consisting of a single component
minimal surface. Note that simple connectivity then implies that the boundary must
be topologically a 2-sphere, regardless of whether this surface is stable. Moreover, the
auxiliary inequality of (1.5) is not needed in the single black hole case, since when
the minimal surface is stable the area-angular momentum-charge inequality is known
to be automatically satisfied [12,13,15].

The Penrose inequality without angular momentum and charge was established in
the time-symmetric case through the ground breaking work of Bray [4] and Huisken–
Ilmanen [17]. As shown in [26], the addition of charge to this inequality requires the
additional assumption of the area-charge inequality in the multiple black hole case.
This version of the Penrose inequality was then established in [20,21] by general-
izing Bray’s conformal flow. Inequalities providing a lower bound for the mass in
terms of angular momentum and charge, which are implied by (1.5), have also been
thoroughly established [7,8,10,11,19,24]. However, it turns out that including horizon
area together with angular momentum is quite difficult. In fact, there appear to be only
two results in the literature to date in this direction [1,2], and the approach taken in
those articles is based on inverse mean curvature flow. In contrast, the present paper
focuses on the techniques used to establish the mass-angular momentum inequali-
ties, namely minimizing renormalized harmonic energies. We refer the reader to the
excellent survey [22] for a more detailed account concerning the status of the Penrose
inequality.

The results presented here rely on the existence of Weyl coordinates. These are
cylindrical type coordinates (ρ, z, φ) with ρ ≥ 0, −∞ < z < ∞, 0 ≤ φ < 2π that
are typically associated with the study of stationary axisymmetric black holes, and
play an important role in that setting by helping to reduce the Einstein equations to
the study of a harmonic map. Details describing this coordinate system for the present
situation are given in the appendix, and are discussed in the next section. It has been
shown in [9] that such a coordinate system exists more generally for simply connected,
asymptotically flat initial data sets. In these coordinates the metric takes the form

g = e−2U+2α(dρ2 + dz2) + ρ2e−2U (dφ + Aρdρ + Azdz)
2, (1.7)

where η = ∂φ is the rotational Killing field, and all the coefficient functions are smooth
and axisymmetric. In these coordinates the minimal surface horizon is identified with
the interval (−m0,m0) on the z-axis. The constant m0 > 0 is uniquely determined
by the geometry of the initial data, and 2m0 will be referred to as the horizon rod
length. The functions U and α exhibit singular behavior at the horizon, and this may
be modeled by the corresponding functions U0, α0 arising from the Schwarzschild
solution having massm0. We may then writeU = U0 +U and α = α0 +α, where the
remaindersU and α are now uniformly bounded and possess bounded first derivatives
even at the horizon. These ‘renormalized’ functions measure the deviation from the
Schwarzschild solution. An important combination of these two which appears in the
horizon area formula is β := α − 2U . For the Kerr black hole this quantity may
be expressed nicely in terms of surface gravity, see Appendix B. In what follows
the ADM mass/energy of the initial data will be denoted by m, and we note that the
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asymptotically flat asymptotics (1.3) guarantee that total mass and energy agree, that
is the ADM linear momentum vanishes. Our main result may then be stated as follows.

Theorem 1.1 Let (M, g, k, E, B) be a simply connected, axisymmetric, maximal,
asymptotically flat initial data set for the Einstein–Maxwell equations with minimal
surface boundary, having nonnegative energy densityμem ≥ 0, no chargedmatter, and
satisfying the compatibility condition for the existence of a twist potential Jem(η) = 0.
Let Ak and βk denote the horizon area and Weyl coordinate function for the unique
Kerr–Newman black hole sharing the same angular momentum, charge, and horizon
rod length as the initial data set. Then

m ≥
√

Ak

16π
+ Q2

2
+ π(Q4 + 4J 2)

Ak
+ 1

4

∫ m0

−m0

(β(0, z) − βk(0, z))dz, (1.8)

and equality occurs if and only if the initial data agree with that of the corresponding
Kerr–Newman spacetime.

The hypotheses of this theorem are in agreement with those expected for the conjec-
tured Penrose inequality with angular momentum and charge, except for one missing
statement. Namely, in the above result the minimal surface boundary is not required to
be outerminimizing, meaning it is not required to have the property that every surface
which encloses it has area greater than or equal to A = |∂M |. This property is neces-
sary, however, for the actual Penrose inequality as counterexamples are known to exist
without it. Thus, Theorem 1.1 holds under more general circumstances than those for
which the Penrose inequality can be valid, and so the resulting inequality (1.8) must
differ from (1.5). Indeed, the most apparent difference arises from the presence of the
horizon rod integral involving the functions β and βk , which does not appear in the
Penrose inequality. This integral measures the discrepancy between the initial data
and the model Kerr–Newman solution. It is unknown at this time whether this horizon
integral is nonnegative under the current hypotheses. One may speculate that nonneg-
ativity is not necessarily guaranteed unless the boundary is outerminimizing. After
all β, like the outerminimizing condition, is non-local. Another difference between
(1.8) and the conjectured inequality is the presence of the Kerr–Newman horizon area
Ak instead of A, although the algebraic structure of this part of the inequality is the
same. Despite these differences, one may achieve the desired Penrose inequality under
additional assumptions. In particular, if we assume that the initial data is appropri-
ately similar to the model Kerr–Newman solution at the horizon then the conjectured
inequality follows.

Corollary 1.2 Under the hypotheses of Theorem 1.1, assume further that A ≥ Ak and
β is constant on the horizon rod, then

m ≥
√

Ak

16π
+ Q2

2
+ π(Q4 + 4J 2)

Ak
, (1.9)
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and equality occurs if and only if the initial data agree with that of the corresponding
Kerr–Newman spacetime. In particular, if A = Ak then the Penrose inequality with
angular momentum and charge holds.

This type of result may be considered a generalization of that of Gibbons and
Holzegel in [16], who established the Penrose inequality without contributions from
angular momentum and charge by utilizing the advantages ofWeyl coordinates. In that
paper they also had a more stringent condition than that of Corollary 1.2, concerning
the agreement between the initial data and associated Schwarzschild solution on the
horizon. Another related result is that of Chrusciel andNguyen [9]who utilize a related
coordinate system referred to as pseudospherical coordinates, and obtain a mass lower
bound in terms of the horizon rod length.

This paper is organized as follows. In Sect. 2 we obtain the preliminary mass lower
bound arising from Weyl coordinates, and relate it to a reduced harmonic energy.
Section 3 is dedicated to examining the various asymptotics of relevant quantities in
Weyl coordinates, and in Sect. 4 it is established that the Kerr–Newman black hole
is a global minimizer of the reduced harmonic energy. Finally, Sect. 5 is dedicated to
the proof of the main results. Two appendices are included to discuss technical issues
related to the metric coefficients in Weyl coordinates near the poles of the horizon, as
well as the computations to show the relationship between β and surface gravity in
the Kerr setting.

2 Themass formula and reduced harmonic energy

An initial data set (M, g, k) as in Theorem 1.1 admits a global set of Weyl coordinates
[9] (ρ, z, φ) in which the metric takes the form (1.7) and the scalar curvature is given
by [5]

2e−2U+2αR = 8�U − 4�ρ,zα − 4|∇U |2 − ρ2e−2α (
∂z Aρ − ∂ρ Az

)2
, (2.1)

where� is theLaplacianwith respect to the flatmetric onR3 and�ρ,z = ∂2ρ+∂2z . Since
there is a single black hole, or rather one minimal surface boundary component, the
z-axis is broken up into three intervals or ‘rods’ (−∞,−m0), (−m0,m0), (m0,∞) in
which the two semi-infinite rods are the axis and the finite rod represents the horizon
boundary ∂M . The value m0 > 0 is uniquely determined by the geometry of the
initial data. Let U0 and α0 denote the metric coefficients in Weyl coordinates for the
Schwarzschild solution having this same rod structure; note thatm0 is then the mass of
this Schwarzschild spacetime. If r+ = √

ρ2 + (z − m0)2 and r− = √
ρ2 + (z + m0)2

denote the Euclidean distances to the poles p+ = (0,m0) and p− = (0,−m0) in the
ρz-plane, then

U0 = 1

2
log

r− + r+ − 2m0

r+ + r− + 2m0
, α0 = 1

2
log

(r− + r+)2 − 4m2
0

4r−r+
. (2.2)
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These functions blow-up on the horizon but are finite along the axis. In particular

U0 = −m0

r
+ O

(
1

r2

)
, α0 = O

(
1

r2

)
as r :=

√
ρ2 + z2 → ∞, (2.3)

U0 = 1

2
log

(
z − m0

z + m0

)
+ O(ρ2), α0 = O(ρ2) as ρ → 0 and |z| ≥ m0 + ε,

(2.4)

U0 = log ρ + O(1), α0 = log ρ + O(1) as ρ → 0 and |z| ≤ m0 − ε, (2.5)

where ε > 0. These Schwarzschild coefficients play the role of singular part for the
metric coefficients of (1.7). That is, we may writeU = U0+U and α = α0+α where
U and α remain bounded. In fact, this decomposition has the following regularity
properties which are proved in the appendix and rely on the minimal surface condition
at the boundary.

Lemma 2.1 Under the assumptions of Theorem 1.1 the renormalized functions U
and α are smooth away from the horizon rod, and have continuous first derivatives
everywhere except possibly at the poles p± where they are bounded. At infinity U =
O1(r−1/2−ε) and α = O1(r−1/2−ε) for some ε > 0.

Let us now use this decomposition of the metric coefficients to compute the ADM
mass. Recall from [9] that if S∞ represents the limit as r → ∞ for coordinate spheres
Sr then the mass is given by

m = 1

8π

∫
S∞

[
∂r (2U − α) + α

r

]
dσ. (2.6)

Theboundary terms at infinity in this formula arise from integrating the scalar curvature
formula (2.1). Observe that

∫
R3

�ρ,zαdx =
∫
R
2+
2πρ�ρ,zαdρdz

= lim
ε→0

∫
ρ=ε

2π(α − ρ∂ρα)dz + lim
r→∞

∫
∂D+

r

2π(ρ∂rα − α sin θ)ds

= lim
ε→0

∫
ρ=ε

2π(α − ρ∂ρα)dz +
∫
S∞

(
∂rα − α

r

)
dσ. (2.7)

Here D+
r is the half disk of radius r , and ρ = r sin θ and z = r cos θ . Furthermore

∫
R3

�Udx =
∫
S∞

∂rUdσ − lim
ε→0

∫
ρ=ε

2πρ∂ρUdz, (2.8)
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and since U0 = O1(r−1) as r → ∞ with U0 harmonic∫
R3

|∇U |2dx =
∫
R3

|∇(U0 +U )|2dx

=
∫
R3

(|∇U |2 + ∇(U0 + 2U ) · ∇U0
)
dx

=
∫
R3

|∇U |2dx − lim
ε→0

∫
ρ=ε

(U0 + 2U )∂ρU0dσ +
∫
S∞

(U0 + 2U )∂rU0dσ

=
∫
R3

|∇U |2dx − lim
ε→0

∫
ρ=ε

2πρ(U0 + 2U )∂ρU0dz. (2.9)

Therefore by integrating the scalar curvature formula, and putting all these computa-
tions together, we find that

8πm =
∫
R3

[
|∇U |2 + 1

2
e−2U+2αR + 1

4
ρ2e−2α(∂z Aρ − ∂ρ Az)

2
]
dx

+ lim
ε→0

∫
ρ=ε

[
4πρ∂ρU + 2π(α − ρ∂ρα) − 2πρ(U0 + 2U )∂ρU0

]
dz.

(2.10)

Consider now the boundary integrals in (2.10). Computations show that

lim
ε→0

∫
ρ=ε

ρ∂ρUdz = lim
ε→0

∫
ρ=ε

ε∂ρU0(ε, z)dz = 2m0, (2.11)

and

lim
ε→0

∫
ρ=ε

[
α − ρ∂ρα − ρ(U0 + 2U )∂ρU0

]
dz

= lim
ε→0

∫
ρ=ε

|z|<m0

(
α0 + α − ρ∂ρα0 −U0 − 2U

)
dz

=
∫ m0

−m0

(α − 2U )(0, z)dz. (2.12)

Furthermore, simple connectedness and the divergence free condition for the electric
and magnetic fields gives rise to electromagnetic potentials [19, Section 2]

dψ = F(η, ·), dχ = �F(η, ·), (2.13)

where F is the field strength tensor and � denotes the Hodge star operation. Similarly
the compatibility condition Jem(η) = 0 guarantees the existence of a charged twist
potential

dv = k(η) × η − χdψ + ψdχ. (2.14)
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Since the initial data aremaximal, nonnegativity of the energy densityμem ≥ 0 implies
the following lower bound [19, Section 2] for scalar curvature

R ≥ |k|2g + 2(|E |2g + |B|2g) ≥ 2
e6U−2α

ρ4 |∇v + χ∇ψ − ψ∇χ |2

+2
e4U−2α

ρ2 (|∇χ |2 + |∇ψ |2). (2.15)

Putting all this together yields the mass lower bound

m ≥ 1

8π

∫
R3

(
|∇U |2 + e4U

ρ4 |∇v + χ∇ψ − ψ∇χ |2 + e2U

ρ2 (|∇χ |2 + |∇ψ |2)
)
dx

+ 1

4

∫ m0

−m0

(α(0, z) − 2U (0, z))dz + m0. (2.16)

Related formulas were obtained in [6,9] and [16] in different settings.
The volume integral on the right-hand side of (2.16) is directly related to the har-

monic energy of maps between R
3 \ � → H

2
C
, where � = {ρ = 0, |z| > m0} is the

axis. More precisely, let �̃ = (u, v, χ,ψ) : R3 \� → H
2
C
and consider the harmonic

energy of this map on a bounded domain � ⊂ R
3 \ �:

E�(�̃) =
∫

�

|∇u|2 + e4u |∇v + χ∇ψ − ψ∇χ |2 + e2u
(
|∇χ |2 + |∇ψ |2

)
dx .

(2.17)

Set u = U − log ρ, then the reduced energy I� of the renormalized map � =
(U , v, χ,ψ) is related to the harmonic energy of �̃ by

I�(�) = E�(�̃) +
∫

∂�

(2U +U0 − log ρ)∂ν(log ρ −U0)dσ, (2.18)

where ν denotes the unit outer normal to the boundary ∂� and

I�(�) =
∫

�

|∇U |2 + e4U

ρ4 |∇v + χ∇ψ − ψ∇χ |2 + e2U

ρ2

(
|∇χ |2 + |∇ψ |2

)
dx .

(2.19)

Observe that the volume integral of (2.16) is exactly the reduced energy on R3, which
will be denoted by I(�). The relation (2.18) is established through an integration by
parts, using the fact that log ρ and U0 are harmonic on R

3 \ �. Namely
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I�(�) =
∫

�

(
|∇(u −U0 + log ρ)|2 + e4u |∇v + χ∇ψ − ψ∇χ |2 + e2u(|∇χ |2 + |∇ψ |2)

)
dx

=
∫

�

|∇u|2 + ∇(2u −U0 + log ρ) · ∇(log ρ −U0)dx

+
∫

�

e4u |∇v + χ∇ψ − ψ∇χ |2 + e2u(|∇χ |2 + |∇ψ |2)dx

=
∫

�

(
|∇u|2 + e4u |∇v + χ∇ψ − ψ∇χ |2 + e2u(|∇χ |2 + |∇ψ |2)

)
dx

+
∫

∂�

(2u −U0 + log ρ)∂ν(log ρ −U0)dσ

= E�(�̃) +
∫

∂�

(2U +U0 − log ρ)∂ν(log ρ −U0)dσ. (2.20)

The functional I may be considered a regularization of E since the infinite term∫ |∇(log ρ − U0)|2 has been removed, and since the two functionals differ only by a
boundary term they must have the same critical points.

Let �̃k = (uk, vk, χk, ψk) denote the harmonic map associated with the Kerr–
Newman solution, and let �k be the corresponding renormalized map where uk =
Uk − log ρ = Uk + U0 − log ρ. It follows that �k is a critical point of I. As will be
shown in Sect. 4, �k realizes the global minimum for I.

Theorem 2.2 Suppose that � = (U , v, χ,ψ) is smooth and satisfies the asymptotics
(3.4)–(3.14). If v|� = vk |� , χ |� = χk |� , and ψ |� = ψk |� then there exists a constant
C > 0 such that

I(�) − I(�k) ≥ C

(∫
R3

dist6
H
2
C

(�,�k)dx

) 1
3

. (2.21)

This is a key result in the proof of the main theorem. Inequality (2.21) together
with the mass formula (2.16) yield a lower bound for the ADM mass in terms of
the reduced energy of the unique Kerr–Newman harmonic map possessing the same
angular momentum, charge, and horizon rod length as the given initial data. Since this
Kerr–Newman harmonic energy is computed to have the correct expression for the
Penrose inequality, the desired result (1.8) follows. Details of the proof are given in
Sect. 5.

3 Asymptotics inWeyl coordinates

In order to minimize the functional I(�) it is necessary to choose the appropriate
asymptotics for the map �. The asymptotics will be guided by the principle of having
a finite reduced energy, however the convexity minimization argument of the next
section will in general require stronger asymptotics than that which is optimal for
integrability. It will be useful to first record the asymptotics of the Schwarzschild
metric coefficients near the poles, namely a computation shows that

123



  118 Page 10 of 23 M. Khuri et al.

eU0 = O(r1/2+ ) as r+ → 0 and z ≥ m0,

eU0 = O(ρr−1/2
+ ) as r+ → 0 and z ≤ m0, (3.1)

eU0 = O(ρr−1/2
− ) as r− → 0 and z ≥ −m0,

eU0 = O(r1/2− ) as r− → 0 and z ≤ −m0, (3.2)

eU0−α0 = O(r1/2± ) as r± → 0. (3.3)

According to Lemma 2.1 we have

U ∈ C0,1(R3), U = O1(r
−1/2−ε) as r → ∞, (3.4)

which is enough to guarantee that the first term of I(�) is finite. Consider now the
potential terms and set ω = dv + χdψ − ψdχ . In order to achieve integrability at
infinity and near the axes away from the poles wewill require, for λ > 3

2 , the following
asymptotics

|ω| = ρ2O(r−λ), |∇χ | + |∇ψ | = ρO(r−λ) as r → ∞, (3.5)

|ω| = O(ρ2), |∇χ | + |∇ψ | = O(ρ) as ρ → 0 and |z| > m0, (3.6)

|χ |, |ψ | = const + ρ2O(r−λ) as r → ∞, (3.7)

|χ |, |ψ | = const + O(ρ2) as ρ → 0 and |z| > m0, (3.8)

from which it follows that

|∇v| = ρO(r−λ+1) as r → ∞, |∇v| = O(ρ) as ρ → 0 and |z| > m0.

(3.9)

It remains to prescribe asymptotics near the poles and in a neighborhood of the
horizon rod. By (3.1), e4U = O(r2+) or e4U = O(ρ4r−2+ ) near p+ if z ≥ m0 or
z ≤ m0 respectively. It follows that the second term in I(�) is integrable near p+ if

|ω| = ρ2O(r−3/2
+ ) for z ≥ m0, |ω| = O(r1/2+ ) for z ≤ m0. (3.10)

Similarly, near p− we will impose

|ω| = O(r1/2− ) for z ≥ −m0, |ω| = ρ2O(r−3/2
− ) for z ≤ −m0. (3.11)

Analogous considerations lead to the condition near p+

|∇χ | + |∇ψ | = ρO(r−1+ ) for z ≥ m0, |∇χ | + |∇ψ | = O(1) for z ≤ m0,

(3.12)
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and near p−

|∇χ | + |∇ψ | = O(1) for z ≥ −m0, |∇χ | + |∇ψ | = ρO(r−1− ) for z ≤ −m0.

(3.13)

Next observe that since eU = O(ρ) near the interior of the horizon rod, if

|ω| = |∇χ | = |∇ψ | = O(1) as ρ → 0 and |z| < m0, (3.14)

then the last two terms of the reduced energy are integrable in this region.
Lastly we record additional asymptotics that follow from above and will be needed

in the following section. Assuming that the value of the potentials on the axes agree
with those of the potentials for the Kerr–Newman map �k , we may integrate on lines
perpendicular to the axes and near p± to obtain

|v − vk | + |χ − χk | + |ψ − ψk | = O(ρ2r−1± ) as r± → 0 and |z| ≥ m0.

(3.15)

For |z| ≤ m0, integrating on horizontal lines will not yield such an estimate since the
two sets of potentials do not necessarily agree on the horizon rod. Thus, we integrate
along radial lines emanating from the poles p± to find

|v − vk | + |χ − χk | + |ψ − ψk | = O(r±) as r± → 0 and |z| ≤ m0. (3.16)

4 Minimizing the functional

In this section it will be shown that the renormalized Kerr–Newman harmonic map
�k is the global minimizer of the functional I, among competitors � satisfying the
asymptotics of Sect. 3. This is based on the convexity of harmonic energy E for non-
positively curved target spaces under geodesic deformations. Such a strategy has been
used successfully in connection with mass-angular momentum-charge inequalities in
[8,19,24], where the minimizer arises from extreme black holes. Here we will extend
this method to the setting of nondegenerate black holes. The difficulty arises from the
fact that the convexity property does not pass directly from E to I since the energy
is applied to singular maps. To get around this problem a cut-and-paste procedure is
employed in which the regularized map � is approximated by maps �δ,ε which agree
with �k on certain domains. More precisely, let δ, ε > 0 be small parameters and
set �δ,ε = {δ < r±; r < 2/δ; ρ > ε} and Aδ,ε = B2/δ \ �δ,ε, where B2/δ is the
coordinate ball of radius 2/δ. Then �δ,ε = (U δ,ε, vδ,ε, χδ,ε, ψδ,ε) will be constructed
so that

supp(U δ,ε −Uk) ⊂ B2/δ, supp(vδ,ε − vk, χδ,ε − χk, ψδ,ε − ψk) ⊂ �δ,ε.

(4.1)
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If �̃ t
δ,ε, t ∈ [0, 1] is a geodesic in H

2
C
connecting �̃1

δ,ε = �̃δ,ε and �̃0
δ,ε = �̃k , then

�̃ t
δ,ε ≡ �k outside B2/δ and vtδ,ε = vk, χ

t
δ,ε = χk , and ψ t

δ,ε = ψk on a neighborhood

of Aδ,ε. We then have that U
t
δ,ε = Uk + t(U δ,ε − Uk) on this domain. The fact that

this expression is linear in t , together with convexity of the harmonic energy produces

d2

dt2
I(� t

δ,ε) ≥ 2
∫
R3

|∇ dist
H
2
C

(�δ,ε, �k)|2dx . (4.2)

Furthermore, since �k is a critical point it follows that

d

dt
I(� t

δ,ε)|t=0 = 0. (4.3)

The gap bound of Theorem2.2 is then obtained by integrating (4.2), applying a Sobolev
inequality, and taking the limit as δ, ε → 0. Each of these steps will now be justified.
Repeated use of the asymptotics in Sect. 3 will be made, sometimes implicitly without
reference to a particular equation.

The following cut-off functions are needed to construct the approximations �δ,ε.
Namely

ϕδ =

⎧⎪⎨
⎪⎩
0 if r± ≤ δ,

|∇ϕδ| ≤ 2
δ

if δ < r± < 2δ,

1 if r± ≥ 2δ,

(4.4)

ϕ1
δ =

⎧⎪⎨
⎪⎩
1 if r ≤ 1

δ
,

|∇ϕ1
δ | ≤ 2δ if 1

δ
< r < 2

δ
,

0 if r ≥ 2
δ
,

(4.5)

φε =

⎧⎪⎨
⎪⎩
0 if ρ ≤ ε,
log(ρ/ε)

log(
√

ε/ε)
if ε < ρ <

√
ε,

1 if ρ ≥ √
ε.

(4.6)

The first step deals with neighborhoods of the poles p±. LetFδ(�) = (U , vδ, χδ, ψδ)

where

(vδ, χδ, ψδ) = (vk, χk, ψk) + ϕδ(v − vk, χ − χk, ψ − ψk), (4.7)

so that the potentials of Fδ(�) and �k agree on Bδ(p+) ∪ Bδ(p−).

Lemma 4.1 Suppose that � ≡ �k outside B2/δ , then limδ→0 I(Fδ(�)) = I(�).

Proof Write

I(Fδ(�)) =
∑
±

[Ir±<δ(Fδ(�)) + Iδ<r±<2δ(Fδ(�))
] + Ir±>2δ(Fδ(�)), (4.8)
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where r± > 2δ denotes the complement of B2δ(p+) ∪ B2δ(p−). Then according to
the dominated convergence theorem (DCT)

Ir±≥2δ(Fδ(�)) = Ir±≥2δ(�) → I(�). (4.9)

Furthermore since the potentials ofFδ(�) and�k agree on r± < δ, and eU ≤ ceUk as
|U | and |Uk | are bounded near p±, the second and third integrands of Ir±<δ(Fδ(�))

converge to zero in light of the finite reduced energy of�k . Thefirst integrand involving
|∇U | also tends to zero since this function remains bounded.

Now consider

Iδ<r±<2δ(Fδ(�))

=
∫

δ<r±<2δ
|∇U |2︸ ︷︷ ︸

I1

+
∫

δ<r±<2δ

e4U

ρ4 |ωδ|2︸ ︷︷ ︸
I2

+
∫

δ<r±<2δ

e2U

ρ2 (|∇χδ|2 + |∇ψδ|2)︸ ︷︷ ︸
I3

,

(4.10)

and note that I1 → 0 by the DCT. Next compute

ωδ = ϕδω + (1 − ϕδ)ωk + (v − vk)∇ϕδ + (χkψ − ψkχ)∇ϕδ

+ ϕδ(1 − ϕδ)[(ψ − ψk)∇(χ − χk) − (χ − χk)∇(ψ − ψk)], (4.11)

and use properties of the cut-off function to find

I2 ≤ C
∫

δ<r±<2δ

(
e4U

ρ4 |ω|2 + e4Uk

ρ4 |ωk |2 + e4U

r2±ρ4
|v − vk |2 + e4U

r2±ρ4
|χkψ − ψkχ |2

)

+ C
∫

δ<r±<2δ

e4U

ρ4

(
|ψ − ψk |2|∇(χ − χk)|2 + |χ − χk |2|∇(ψ − ψk)|2

)
.

(4.12)

The first and second terms converge to zero by the DCT and finite reduced energies of
� and�k . The third termmay be estimated with the help of (3.15) and (3.16), namely

∫
δ<r±<2δ

e4U

r2±ρ4
|v − vk |2 ≤

∫
δ<r±<2δ

Cr−2 → 0, (4.13)

and similar considerations apply for the fourth term. For the fifth term employ (3.12),
(3.13), (3.15), and (3.16) to find

∫
δ<r±<2δ

e4U

ρ4 |ψ − ψk |2|∇(χ − χk)|2 ≤
∫

δ<r±<2δ
C → 0, (4.14)

and similarly for the sixth term. This shows that I2 → 0. Lastly, analogous reasoning
yields I3 → 0. �
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Consider now the asymptotically flat end and set

F1
δ (�) = �k + ϕ1

δ (� − �k), (4.15)

so that F1
δ (�) = �k on R

3 \ B2/δ . Then as is shown in [19, Lemma 4.2]

lim
δ→0

I(F1
δ (�)) = I(�). (4.16)

Next we treat the cylindrical regions around the axis and horizon rod, and will make
use of the domains

Cδ,ε = {ρ < ε; δ < r±; r < 2/δ}, (4.17)

W1
δ,ε = {ε < ρ <

√
ε; δ < r±; r ≤ 2/δ; |z| > m}, (4.18)

W2
δ,ε = {ε < ρ <

√
ε; δ < r±; |z| < m}. (4.19)

Let Gε(�) = (U , vε, χε, ψε) where

(vε, χε, ψε) = (vk, χk, ψk) + φε(v − vk, χ − χk, ψ − ψk), (4.20)

so that the potentials of Gε(�) and �k agree on ρ < ε.

Lemma 4.2 Fix δ > 0. Assume that the potentials of � and �k agree on Bδ(p+) ∪
Bδ(p−), and � ≡ �k outside B2/δ , then limε→0 I(Gε(�)) = I(�).

Proof Write

I(Gε(�)) = ICδ,ε
(Gε(�)) + IW1

δ,ε
(Gε(�)) + IW2

δ,ε
(Gε(�))

+I
R3\(Cδ,ε∪W1

δ,ε∪W2
δ,ε)

(Gε(�)). (4.21)

Since the potentials of � and�k agree on Bδ(p±), the DCT and finite reduced energy
imply that

I
R3\(Cδ,ε∪W1

δ,ε∪W2
δ,ε)

(Gε(�)) → I(�). (4.22)

Furthermore since the potentials of Gε(�) and �k agree on Cδ,ε, and eU ≤ ceUk on
this region, the second and third integrands of ICδ,ε

(Gε(�)) converge to zero in light
of the finite reduced energy of �k . The first integrand involving |∇U | also tends to
zero since this function remains bounded.
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The domain W1
δ,ε concerns a neighborhood of the axis of rotation, and therefore

IW1
δ,ε

(Gε(�)) → 0 according to Lemma 4.4 of [19]. Now consider

IW2
δ,ε

(Gε(�)) =
∫
W2

δ,ε

|∇U |2
︸ ︷︷ ︸

I1

+
∫
W2

δ,ε

e4U

ρ4 |ωε|2︸ ︷︷ ︸
I2

+
∫
W2

δ,ε

e2U

ρ2 (|∇χε|2 + |∇ψε|2)︸ ︷︷ ︸
I3

,

(4.23)

and notice that I1 → 0 since |∇U | remains bounded. Next observe that

ωε = φεω + (1 − φε)ωk + (v − vk)∇φε + (χkψ − ψkχ)∇φε

+ φε(1 − φε)[(ψ − ψk)∇(χ − χk) − (χ − χk)∇(ψ − ψk)]. (4.24)

The asymptotics of the cut-off function then yield

I2 ≤ C
∫
W2

δ,ε

(
e4U

ρ4 |ω|2 + e4Uk

ρ4 |ωk |2 + (log ε)−2ρ−2|v − vk |2 + (log ε)−2ρ−2|χkψ − ψkχ |2
)

+ C
∫
W2

δ,ε

(|ψ − ψk |2|∇(χ − χk)|2 + |χ − χk |2|∇(ψ − ψk)|2
)
.

(4.25)

Thefirst two terms converge to zero by thefinite reduced energies. Furthermore accord-
ing to (3.14), |v − vk | = O(1) and thus∫

W2
δ,ε

(log ε)−2|v − vk |2 ≤ C
∫
W2

δ,ε

(log ε)−2ρ−2 = O
(
(log ε)−1

)
→ 0.

(4.26)

Analogous considerations may be used to treat the fourth term. Lastly, since |ψ −ψk |
and |∇(χ − χk)| remain bounded the fifth term tends to zero, and similarly for the
sixth. �

We are now in a position to construct the appropriate approximation to � via the
cut and paste operations by composition

�δ,ε = Gε

(
Fδ

(
F1

δ (�)
))

. (4.27)

Then according to (4.16) and Lemmas 4.1 and 4.2,

lim
δ→0

lim
ε→0

I(�δ,ε) = I(�). (4.28)

Proof of Theorem 2.2 As in the introduction to this section let �̃ t
δ,ε be the geodesic

deformation connecting �̃k to �̃δ,ε. Due to the properties of the approximation the
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first component of the geodesic isU
t
δ,ε = Uk+t(U δ,ε −Uk) onAδ,ε, and in particular

dist
H
2
C

(�δ,ε, �k) = |U δ,ε − Uk | on this domain. These two observations, together
with the asymptotics near the poles p± show that one may differentiate under the
integral sign to directly compute the second variation and find

d2

dt2
IAδ,ε

(� t
δ,ε) ≥

∫
Aδ,ε

2|∇(U δ,ε −Uk)|2 =
∫
Aδ,ε

2|∇ dist
H
2
C

(�δ,ε, �k)|2.
(4.29)

On the domain �δ,ε, the relation (2.18) between reduced and harmonic energies may
be used. Due to the linearity of U

t
δ,ε in t , the boundary term of (2.18) vanishes when

computing the second variation so that

d2

dt2
I�δ,ε (�

t
δ,ε) = d2

dt2
E�δ,ε (�̃

t
δ,ε) ≥

∫
�δ,ε

2|∇ dist
H
2
C

(�δ,ε, �k)|2, (4.30)

where the inequality is obtained from the convexity of harmonic energy [24]. Since
�δ,ε and Aδ,ε are complementary in B2/δ , and the geodesic deformation is constant
outside of this large ball, it follows that (4.2) holds.

Next, let δ̄ < δ and ε̄ < ε, and observe that since �k is a critical point

d

dt
I�δ̄,ε̄

(�t
δ,ε)|t=0 = −

∑
±

∫
∂Bδ̄ (p±)

2(U δ,ε −Uk)∂νUk −
∫
∂Cδ̄,ε̄

2(U δ,ε −Uk)∂νUk ,

(4.31)

where ν is the unit normal pointing towards infinity. In addition, using the constancy
of the potentials and linearity of U

t
δ,ε on Aδ̄,ε̄ we find that

d

dt
IAδ̄,ε̄

(� t
δ,ε)|t=0 =

∫
Aδ̄,ε̄

2∇Uk · ∇(U δ,ε −Uk) + 4(U δ,ε −Uk)
e4Uk

ρ4 |ωk |2

+
∫
Aδ̄,ε̄

2(U δ,ε −Uk)
e2Uk

ρ2

(
|∇χk |2 + |∇ψk |2

)
. (4.32)

Since |U | + |∇U | is uniformly bounded, (4.31) tends to zero as ε̄ → 0 followed by
δ̄ → 0, and the same holds for (4.32) since it may be estimated by the reduced energy
of �k on Aδ̄,ε̄.

We may now integrate (4.2) two times and use a Sobolev inequality to obtain the
inequality (2.21) of Theorem2.2with� replaced by�δ,ε . In light of (4.28), the desired
result follows by taking the limits as ε → 0 and then δ → 0. �
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5 Proof of themain results

We first show that under the assumptions of Theorem 1.1 the potentials and quantities
arising from Weyl coordinates satisfy the asymptotics stated in Sect. 3. Lemma 2.1
guarantees thatU behaves in a manner consistent with (3.4). Next, as is shown in [19]

e6U−2α

ρ4 |∇v + χ∇ψ − ψ∇χ |2 ≤ |k|2g. (5.1)

Consider a domain near the poles p± with |z| ≥ m0, then using (3.1)–(3.3) we find
that

|∇v + χ∇ψ − ψ∇χ | = O(ρ2e−2Ue−U+α) = O(ρ2r−3/2
± ), (5.2)

since |k|g remains bounded. Similarly if |z| ≤ m0

|∇v + χ∇ψ − ψ∇χ | = O(ρ2e−2Ue−U+α) = O(r1/2± ), (5.3)

which confirms (3.10) and (3.11). Near the horizon rod away from the poles, that is
|z| < m0, the asymptotics (2.5) imply

|∇v + χ∇ψ − ψ∇χ | = O(ρ2e−2Ue−U+α) = O(1), (5.4)

confirming part of (3.14).
For the electromagnetic potentials recall that from [19],

e4U−2α

ρ2

(
|∇χ |2 + |∇ψ |2

)
≤ |E |2g + |B|2g. (5.5)

Again the right-hand side is bounded near the poles, so for |z| ≥ m0 we have

|∇χ | + |∇ψ | = O(ρe−Ue−U+α) = O(ρr−1± ), (5.6)

and for |z| ≤ m0

|∇χ | + |∇ψ | = O(ρe−Ue−U+α) = O(1). (5.7)

This shows that (3.12) and (3.13) hold. Analogously, near the horizon rod with |z| <

m0

|∇χ | + |∇ψ | = O(1), (5.8)

which fulfills (3.14). Furthermore the asymptotics in a neighborhood of the axis, (3.6)
and (3.8), may be obtained in similar fashion. Lastly, (3.5) and (3.7) follow from
asymptotic flatness.
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We are now in a position to establish Theorem 1.1. As shown above, the map
� arising from the initial data satisfies the hypotheses of Theorem 2.2. Therefore,
together with (2.16) the following lower bound for the mass is achieved

m ≥ 1

8π
I(�k) + 1

4

∫ m0

−m0

(α(0, z) − 2U (0, z))dz + m0. (5.9)

Let mk and Ak denote the mass and horizon area of the Kerr–Newman solution asso-
ciated with the map �k . Then since the Kerr–Newman solution is known to saturate
the Penrose inequality

mk =
√

Ak

16π
+ Q2

2
+ π(Q4 + 4J 2)

Ak

= 1

8π
I(�k) + 1

4

∫ m0

−m0

(αk(0, z) − 2Uk(0, z))dz + m0.

(5.10)

It follows that

m ≥
√

Ak

16π
+ Q2

2
+ π(Q4 + 4J 2)

Ak
+ 1

4

∫ m0

−m0

(β(0, z) − βk(0, z))dz, (5.11)

which is the desired inequality. In the case that this inequality is saturated we must
have � = �k by Theorem 2.2. Several other quantities arising from the derivation of
(2.16) vanish, from which it may be shown that the initial data (M, g, k) agrees with
that of the canonical slice of the Kerr–Newman spacetime; details are given in [19,
Section 2].

We will now establish Corollary 1.2. If β is constant on the horizon rod then

e
1

2m0

∫ m0−m0
β(0,z)dz = 1

2m0

∫ m0

−m0

eβ(0,z)dz = A

16πm2
0

. (5.12)

The same equality holds for β, A replaced by βk , Ak since βk is also constant on the
horizon. Therefore if we assume that A ≥ Ak , then∫ m0

−m0

β(0, z)dz ≥
∫ m0

−m0

βk(0, z)dz, (5.13)

which together with (5.11) yields the desired inequality. The case of equality here is
treated as above. �

Appendix A. Weyl coordinates

Here we prove Lemma 2.1. In [9] the existence of Weyl coordinates was established
by first constructing so called pseudospherical coordinates (ρs, zs, φ), in which the
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initial data boundary ∂M is represented by a semi-circle of radius m0
2 about the origin

in the ρs zs-plane. This contrasts with Weyl coordinates in which the boundary takes
the form of an interval on the z-axis in the orbit space. Pseudospherical coordinates
are valid on the planar region C+ \ Dm0/2 = {ρs + i zs | ρs > 0, rs > m0/2}, where
r2s = ρ2

s + z2s . In these coordinates the metric takes the standard ‘Brill’ form

g = e−2Us+2αs (dρ2
s + dz2s ) + ρ2

s e
−2Us (dφ + Aρs dρs + Azs dzs)

2. (A.1)

This structure for the metric is preserved under any coordinate change of the plane
which yields a conformal transformation, andWeyl coordinates are a particular exam-
ple of this. The metric coefficients are axisymmetric, smooth up to the boundary in
C+ \ Dm0/2 with αs = 0 on the zs-axis, and satisfy the fall-off

Us = O1(r
−1/2−ε
s ), αs = O1(r

−1/2−ε
s ), Aρs = O1(r

−3/2−ε
s ), Azs = O1(r

−3/2−ε
s ).

(A.2)

Weyl coordinates (ρ, z, φ) are constructed from pseudospherical coordinates as
follows. Define complex coordinates ζs = ρs + i zs and ζ = ρ + i z and consider the
holomorphic diffeomorphism f : C+ \ Dm0/2 → C+ given by

ζ = f (ζs) = ζs − m2
0

4ζs
⇒ ρ = ρs(r2s − m2

0
4 )

r2s
, z = zs(r2s + m2

0
4 )

r2s
.

(A.3)

Observe that

∂ζ

∂ζs
= 1 + m2

0

4ζ 2
s

, (A.4)

which is smooth up to the boundary of C+ \ Dm0/2 and is nonzero except at the
points ζs = ±m0

2 i . Thus by the inverse function theorem, the inverse transformation
is holomorphic and has bounded derivatives away from the poles ζ = ±m0i of the
horizon. Near these points we have

∣∣∣∣ ∂ζ

∂ζs

∣∣∣∣ ≥ C−1|ζs ∓ m0

2
i | ⇒

∣∣∣∣∂ζs

∂ζ

∣∣∣∣ ≤ C

|ζs ∓ m0
2 i | . (A.5)

In particular, all first derivatives of the real and imaginary parts admit the bound

∣∣∣∣∂ρs

∂ρ

∣∣∣∣ +
∣∣∣∣∂ρs

∂z

∣∣∣∣ +
∣∣∣∣∂zs∂ρ

∣∣∣∣ +
∣∣∣∣∂zs∂z

∣∣∣∣ ≤ C

|ζs ∓ m0
2 i | (A.6)

near the poles.
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The relationship between U , α of Weyl coordinates and Us , αs of pseudospherical
coordinates is given by [9]

U (ρ, z) = Us(ρs, zs) − log
ρs

ρ
, α(ρ, z) = αs(ρs, zs) + log

|ζs |2 − m2
0
4

|ζ 2
s + m2

0
4 |

.

(A.7)

Note that the second term on the right-hand side of both expressions depends only on
the coordinate transformation. For the Schwarzschild solution

Us,0(ρs, zs) = −2 log
2rs + m0

2rs
, αs,0(ρs, zs) = 0, (A.8)

and the expressions for the Schwarzschild data U0 and α0 in Weyl coordinates may
then be obtained from the above formulas. We may then write U = U0 + U and
α = α0 + α where

U (ρ, z) := U (ρ, z) −U0(ρ, z) = Us(ρs, zs) −Us,0(ρs, zs), (A.9)

and

α(ρ, z) := α(ρ, z) − α0(ρ, z) = αs(ρs, zs). (A.10)

It immediately follows that U and α are uniformly bounded and satisfy the desired
decay at infinity. Furthermore since Us , Us,0, and αs are smooth, the regularity prop-
erties ofU and α depend on the coordinate transformation f −1, and the only possible
issues arise at the poles.

Consider the partial derivative

∂U

∂ρ
=

(
∂Us

∂ρs
− ∂Us,0

∂ρs

)
∂ρs

∂ρ
+

(
∂Us

∂zs
− ∂Us,0

∂zs

)
∂zs
∂ρ

. (A.11)

Since the horizon is a minimal surface

∂

∂rs
(Us − 1

2
αs) = 2

m0
= ∂Us,0

∂rs
when rs = m0

2
. (A.12)

In particular this holds at (ρs, zs) = (0,±m0/2). Moreover, since αs = 0 on the axis
and ∂rs coincides with ±∂zs there, we have(

∂Us

∂zs
− ∂Us,0

∂zs

) (
0,±m0

2

)
= 0. (A.13)

Next, use the fact that all functions are axisymmetric to find

∂Us

∂ρs

(
0,±m0

2

)
= ∂Us,0

∂ρs

(
0,±m0

2

)
= 0. (A.14)
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Therefore the first derivatives of Us − Us,0 vanish at the poles. This, combined with
the smoothness of this function up to the boundary, shows that even though ∂ρρs and
∂ρzs may blow-up at these points in a manner controlled by (A.6), the full expression
(A.11) remains bounded. Similar considerations may be used to treat the ∂zU and the
derivatives of α.

Appendix B. Relation ofˇ to surface gravity

Here we compute β = α−2U on the horizon rod for the Kerr black hole. Let us recall
the constant time slice Kerr metric gkerr in Weyl coordinates [25]. We will denote the
mass and angular momentum of the Kerr metric bym andJ = ma, while the notation
for half the horizon rod length will be m0. Then

gkerr = e−2Ukerr+2αkerr (dρ2 + dz2) + ρ2e−2Ukerr dφ2, (B.1)

where

e−2Ukerr+2αkerr = m2
0 (r+ + r− + 2m)2 + a2(r+ − r−)2

4m2
0r+r−

, (B.2)

ρ2e−2Ukerr

= m2
0 (r+ + r− + 2m)2 + a2(r+ − r−)2

m2
0

(
(r+ + r−)2 − 4m2

) + a2(r+ − r−)2
ρ2

−
[
am(r+ + r− + 2m)(4m2

0 − (r+ − r−)2)
]2

[
m2
0

(
(r+ + r−)2 − 4m2

) + a2(r+ − r−)2
] [

m2
0 (r+ + r− + 2m)2 + a2(r+ − r−)2

] ,

(B.3)

with r± = √
ρ2 + (z ± m0)2. Write Ukerr = U0 + Ukerr and αkerr = α0 + αkerr ,

where U0 and α0 are the corresponding Schwarzschild functions. It follows that for
|z| < m0 we have

Ukerr (0, z) = −1

2
log

(
m2(m + m0)

2

m2
0(m + m0)2 + a2z2

)
, (B.4)

and

αkerr (0, z) = 1

2
log

[
m2

0(m + m0)
2 + a2z2

]2
4m4

0m
2(m + m0)2

. (B.5)
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Notice that J = 0 implies that Ukerr (0, z) = αkerr (0, z) = 0 as expected, since half
the horizon rod length is given by

m0 =
√
m2 − a2 =

√
m2 − J 2

m2 . (B.6)

We now have that on the horizon rod

βkerr (0, z) = αkerr (0, z) − 2Ukerr (0, z) = log
m(m + m0)

2m2
0

≥ 0. (B.7)

Consider now the surface gravity of the Kerr black hole

κ =
√
m4 − J 2

2
(
m3 + m

√
m4 − J 2

) . (B.8)

Comparing the two formulas produces

βkerr (0, z) = − log(4m0κ). (B.9)
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